Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Microbiol Spectr ; 11(3): e0489522, 2023 Jun 15.
Article in English | MEDLINE | ID: covidwho-2248126

ABSTRACT

The clinical performance of two rapid antigen tests for the diagnosis of Severe Acute Respiratory Coronavirus (SARS-CoV-2) were regionally evaluated in East African populations. Swabs were collected from 1,432 individuals from five Partner States of the East African Community (Tanzania, Uganda, Burundi, Rwanda and South Sudan). The two rapid antigen tests (Bionote NowCheck COVID-19 Ag and SD Biosensor STANDARD Q COVID-19 Ag) were evaluated against the detection of SARS-CoV-2 RNA by the Reverse Transcription PCR (RT-PCR) gold standard. Of the concordant results with both RT-PCR and rapid antigen test data (862 for Bionote and 852 for SD Biosensor), overall clinical sensitivity was 60% and 50% for the Bionote NowCheck and the SD Biosensor STANDARD Q, respectively. Stratification by viral load, including samples with RT-PCR cycle thresholds (Ct) of <25, improved sensitivity to 90% for both rapid diagnostic tests (RDTs). Overall specificity was good at 99% for both antigen tests. Taken together, the clinical performance of both Ag-RDTs in real world settings within the East African target population was lower than has been reported elsewhere and below the acceptable levels for sensitivity of >80%, as defined by the WHO. Therefore, the rapid antigen test alone should not be used for diagnosis but could be used as part of an algorithm to identify potentially infectious individuals with high viral load. IMPORTANCE Accurate diagnostic tests are essential to both support the management and containment of outbreaks, as well as inform appropriate patient care. In the case of the SARS-CoV-2 pandemic, antigen Rapid Diagnostic Tests (Ag-RDTs) played a major role in this function, enabling widespread testing by untrained individuals, both at home and within health facilities. In East Africa, a number of SARS-CoV-2 Ag-RDTs are available; however, there remains little information on their true test performance within the region, in the hands of the health workers routinely carrying out SARS-CoV-2 diagnostics. This study contributes test performance data for two commonly used SARS-CoV-2 Ag-RDTs in East Africa, which will help inform the use of these RDTs within the region.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , RNA, Viral/genetics , Rapid Diagnostic Tests , COVID-19/diagnosis , Uganda , COVID-19 Testing
3.
Health Secur ; 19(4): 413-423, 2021.
Article in English | MEDLINE | ID: covidwho-1338084

ABSTRACT

Field simulation exercises (FSXs) require substantial time, resources, and organizational experience to plan and implement and are less commonly undertaken than drills or tabletop exercises. Despite this, FSXs provide an opportunity to test the full scope of operational capacities, including coordination across sectors. From June 11 to 14, 2019, the East African Community Secretariat conducted a cross-border FSX at the Namanga One Stop Border Post between the Republic of Kenya and the United Republic of Tanzania. The World Health Organization Department of Health Security Preparedness was the technical lead responsible for developing and coordinating the exercise. The purpose of the FSX was to assess and further enhance multisectoral outbreak preparedness and response in the East Africa Region, using a One Health approach. Participants included staff from the transport, police and customs, public health, animal health, and food inspection sectors. This was the first FSX of this scale, magnitude, and complexity to be conducted in East Africa for the purpose of strengthening emergency preparedness capacities. The FSX provided an opportunity for individual learning and national capacity strengthening in emergency management and response coordination. In this article, we describe lessons learned and propose recommendations relevant to FSX design, management, and organization to inform future field exercises.


Subject(s)
Civil Defense , Disaster Planning , Africa, Eastern , Disease Outbreaks , Humans , Public Health , World Health Organization
4.
BMC Med ; 19(1): 160, 2021 07 09.
Article in English | MEDLINE | ID: covidwho-1301851

ABSTRACT

BACKGROUND: East Africa is home to 170 million people and prone to frequent outbreaks of viral haemorrhagic fevers and various bacterial diseases. A major challenge is that epidemics mostly happen in remote areas, where infrastructure for Biosecurity Level (BSL) 3/4 laboratory capacity is not available. As samples have to be transported from the outbreak area to the National Public Health Laboratories (NPHL) in the capitals or even flown to international reference centres, diagnosis is significantly delayed and epidemics emerge. MAIN TEXT: The East African Community (EAC), an intergovernmental body of Burundi, Rwanda, Tanzania, Kenya, Uganda, and South Sudan, received 10 million € funding from the German Development Bank (KfW) to establish BSL3/4 capacity in the region. Between 2017 and 2020, the EAC in collaboration with the Bernhard-Nocht-Institute for Tropical Medicine (Germany) and the Partner Countries' Ministries of Health and their respective NPHLs, established a regional network of nine mobile BSL3/4 laboratories. These rapidly deployable laboratories allowed the region to reduce sample turn-around-time (from days to an average of 8h) at the centre of the outbreak and rapidly respond to epidemics. In the present article, the approach for implementing such a regional project is outlined and five major aspects (including recommendations) are described: (i) the overall project coordination activities through the EAC Secretariat and the Partner States, (ii) procurement of equipment, (iii) the established laboratory setup and diagnostic panels, (iv) regional training activities and capacity building of various stakeholders and (v) completed and ongoing field missions. The latter includes an EAC/WHO field simulation exercise that was conducted on the border between Tanzania and Kenya in June 2019, the support in molecular diagnosis during the Tanzanian Dengue outbreak in 2019, the participation in the Ugandan National Ebola response activities in Kisoro district along the Uganda/DRC border in Oct/Nov 2019 and the deployments of the laboratories to assist in SARS-CoV-2 diagnostics throughout the region since early 2020. CONCLUSIONS: The established EAC mobile laboratory network allows accurate and timely diagnosis of BSL3/4 pathogens in all East African countries, important for individual patient management and to effectively contain the spread of epidemic-prone diseases.


Subject(s)
COVID-19/prevention & control , Community Networks , Dengue/epidemiology , Hemorrhagic Fever, Ebola/epidemiology , Laboratories , Mobile Health Units , Burundi/epidemiology , COVID-19/therapy , Dengue/prevention & control , Epidemics , Hemorrhagic Fever, Ebola/prevention & control , Hemorrhagic Fever, Ebola/therapy , Humans , Kenya/epidemiology , Mobile Health Units/economics , Public Health , Rwanda/epidemiology , SARS-CoV-2 , South Sudan/epidemiology , Tanzania/epidemiology , Uganda/epidemiology
5.
Global Health ; 17(1): 49, 2021 04 23.
Article in English | MEDLINE | ID: covidwho-1201216

ABSTRACT

BACKGROUND: The emergence of SARS-CoV-2 mutants might lead to European border closures, which impact on trade and result in serious economic losses. In April 2020, similar border closures were observed during the first SARS-CoV-2 wave in East Africa. MAIN BODY: Since 2017 the East African Community EAC together with the Bernhard-Nocht-Institute for Tropical Medicine BNITM established a mobile laboratory network integrated into the National Public Health Laboratories of the six Partner States for molecular diagnosis of viral haemorrhagic fevers and SARS-CoV-2. Since May 2020, the National Public Health Laboratories of Kenya, Rwanda, Burundi, Uganda and South Sudan deployed these mobile laboratories to their respective borders, issuing a newly developed "Electronic EAC COVID-19 Digital Certificate" to SARS-CoV-2 PCR-negative truck drivers, thus assuring regional trade. CONCLUSION: Considering the large financial damages of border closures, such a mobile laboratory network as demonstrated in East Africa is cost-effective, easy to implement and feasible. The East African Community mobile laboratory network could serve as a blueprint for Europe and other countries around the globe.


Subject(s)
COVID-19 Testing , COVID-19/prevention & control , Commerce/organization & administration , Laboratories , Mobile Health Units , Travel/legislation & jurisprudence , Africa, Eastern/epidemiology , COVID-19/diagnosis , COVID-19/epidemiology , Europe/epidemiology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL